A curved multi - component aerosol hygroscopicity model framework : Part 2 – Including organic compounds

نویسندگان

  • D. O. Topping
  • G. B. McFiggans
  • H. Coe
چکیده

This paper describes the inclusion of organic particulate material within the Aerosol Diameter Dependent Equilibrium Model (ADDEM) framework described in the companion paper applied to inorganic aerosol components. The performance of ADDEM is analysed in terms of its capability to reproduce the behaviour of various organic and mixed inorganic/organic systems using recently published bulk data. Within the modelling architecture already described two separate thermodynamic models are coupled in an additive approach and combined with a method for solving the Kohler equation in order to develop a tool for predicting the water content associated with an aerosol of known inorganic/organic composition and dry size. For development of the organic module, the widely used group contribution method UNIFAC is employed to explicitly deal with the non-ideality in solution. The UNIFAC predictions for components of atmospheric importance were improved considerably by using revised interaction parameters derived from electro-dynamic balance studies. Using such parameters, the model was found to adequately describe mixed systems including 5–6 dicarboxylic acids, down to low relative humidity conditions. By comparison with electrodynamic balance data, it was also found that the model was capable of capturing the behaviour of aqueous aerosols containing Suwan-nee River Fulvic acid, a structure previously used to represent the functionality of complex oxidised macromolecules often found in atmospheric aerosols. The additive approach for modelling mixed inorganic/organic systems worked well for a variety of mixtures. As expected, deviations between model predictions and measurements increase with increasing concentration. Available surface tension models, used in evaluating the Kelvin term, were found to reproduce measured data with varying success. Deviations from experimental data increased with increased organic compound complexity. For components only slightly soluble in water, significant deviations from measured surface tension depression behaviour were predicted with both model formalisms tested. A Sensitivity analysis showed that such variation is likely to lead to predicted growth factors within the measurement uncertainty for growth factor taken in the sub-saturated regime. Greater sensitivity was found for the value of dry density used in the assumed form of the dried out aerosol. Comparison with a coupled thermodynamic approach showed that assumed values for interactions parameters may lead to erroneous results where a simple additive approach may provide more accurate results. However, where available, the use of coupled thermodynamics can better reproduce measured behaviour. Further work (and laboratory data) is required to assess whether this difference lies within the experimental uncertainty of observed hygroscopic behaviour …

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Curved multi-component aerosol hygroscopicity model framework 2

D. O. Topping, G. B. McFiggans, and H. Coe School of Earth, Atmospheric and Environmental Sciences, The University of Manchester, The Sackville street building, Sackville street, Manchester M60 1QD, UK Received: 17 November 2004 – Accepted: 6 December 2004 – Published: 23 December 2004 Correspondence to: D. O. Topping ([email protected]) © 2004 Author(s). This work is lice...

متن کامل

Curved multi-component aerosol hygroscopicity model framework 1

D. O. Topping, G. B. McFiggans, and H. Coe School of Earth, Atmospheric and Environmental Sciences, The University of Manchester, The Sackville street building, Sackville street, Manchester M60 1QD, UK Received: 17 November 2004 – Accepted: 6 December 2004 – Published: 23 December 2004 Correspondence to: D. O. Topping ([email protected]) © 2004 Author(s). This work is lice...

متن کامل

How Important is Organic Aerosol Hygroscopicity to Aerosol Indirect Forcing?

Organics are among the most abundant aerosol components in the atmosphere. However, there are still large uncertainties with emissions of primary organic aerosol (POA) and volatile organic compounds (VOCs) (precursor gases of secondary organic aerosol, SOA), formation of SOA, and chemical and physical properties (e.g., hygroscopicity) of POA and SOA. All these may have significant impacts on ae...

متن کامل

The sensitivity of Secondary Organic Aerosol component partitioning to the predictions of component properties – Part 2: Determination of particle hygroscopicity and its dependence on “apparent” volatility

A large number of calculations of absorptive partitioning of organic compounds have been conducted, making use of several methods to estimate pure component vapour pressures and activity coefficients (p0 and γi). The sensitivities of the predicted particle properties (density, hygroscopicity, CCN activation potential) to the choice of p0 and γi models and to the number of components used to rep...

متن کامل

One parameter representation for aerosol-water interactions

Introduction Conclusions References Tables Figures Back Close Full Screen / Esc Abstract Introduction Conclusions References Tables Figures Back Close Full Screen / Esc Printer-friendly Version Interactive Discussion EGU Abstract We present a method to describe the relationship between dry particle diameter and cloud condensation nuclei (CCN) activity using a single hygroscopicity parameter. Va...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005